In Vitro-to-In Vivo Extrapolation of Transporter Inhibition Data for Drugs Approved by the US Food and Drug Administration in 2018

Clin Transl Sci.
Published online 2020 Jan 25

Abstract

A systematic analysis of the inhibition transporter data available in New Drug Applications of drugs approved by the US Food and Drug Administration (FDA) in 2018 (N = 42) was performed. In vitro‐to‐in vivo predictions using basic models were available for the nine transporters currently recommended for evaluation. Overall, 29 parents and 16 metabolites showed in vitro inhibition of at least one transporter, with the largest number of drugs found to be inhibitors of P‐gp followed by BCRP. The most represented therapeutic areas were oncology drugs and anti‐infective agents, each comprising 31%. Among drugs with prediction values greater than the FDA recommended cutoffs and further evaluated in vivo, 56% showed positive clinical interactions (area under the concentration‐time curve ratio (AUCRs) ≥ 1.25). Although all the observed or simulated inhibitions were weak (AUCRs < 2), seven of the nine interactions (involving five drugs) resulted in labeling recommendations. Interestingly, more than half of the drugs with predictions greater than the cutoffs had no further evaluations, highlighting that current basic models represent a useful, simple first step to evaluate the clinical relevance of in vitro findings, but that multiple other factors are considered when deciding the need for clinical studies. Four drugs had prediction values less than the cutoffs but had clinical evaluations or physiologically‐based pharmacokinetic simulations available. Consistent with the predictions, all of them were confirmed not to inhibit these transporters in vivo (AUCRs of 0.94–1.09). Overall, based on the clinical evaluations available, drugs approved in 2018 were found to have a relatively limited impact on drug transporters, with all victim AUCRs < 2.

Variability in In Vitro OATP1B1/1B3 Inhibition Data: Impact of Incubation Conditions on Variability and Subsequent Drug Interaction Predictions

Clin Transl Sci. 2020 Jan; 13(1): 47–52.
Published online 2019 Aug 29

Abstract

As the research into the organic anion transporting polypeptides (OATPs) continues to grow, it is important to ensure that the data generated are accurate and reproducible. In the in vitro evaluation of OATP1B1/1B3 inhibition, there are many variables that can contribute to variability in the resulting inhibition constants, which can then, in turn, contribute to variable results when clinical predictions (R-values) are performed. Currently, the only experimental condition recommended by the US Food and Drug Administration (FDA) is the inclusion of a pre-incubation period.1 To identify other potential sources of variability, a descriptive analysis of available in vitro inhibition data was completed. For each of the 21 substrate/inhibitor pairs evaluated, cell type and pre-incubation were found to have the greatest effect on half-maximal inhibitory concentration (IC50 ) variability. Indeed, when only HEK293 cells and co-incubation conditions were included, the observed variability for the entire data set (highest IC50 /lowest) was reduced from 12.4 to 5.2. The choice of probe substrate used in the study also had a significant effect on inhibitor constant variability. Interestingly, despite the broad range of inhibitory constants identified, these two factors showed little effect on the calculated R-values relative to the FDA evaluation cutoff of 1.1 triggering a clinical evaluation for the inhibitors evaluated. However, because of the small data set available, further research is needed to confirm these preliminary results and define best practice for the study of OATPs.

Organic Anion Transporting Polypeptide 2B1 – More Than a Glass-Full of Drug Interactions

Abstract

The importance of uptake transporters in determining drug disposition is increasingly appreciated. While the focus of regulatory agencies worldwide has been on the hepatic organic anion transporting polypeptides (OATPs)-1B1 and-1B3, there is another isoform of the OATP sub-family, OATP2B1, which should be considered equally relevant. Unlike the other members of the OATP sub-family, OATP2B1 is expressed in multiple organs in humans, including in the intestine and the liver. Similar to other OATPs, OATP2B1 mediates the hepatic and intestinal uptake of many drugs and endogenous compounds. The importance of OATP2B1 in the disposition of many drugs is highlighted by the growing recognition of its role in significant in vivo drug-drug or food-drug interactions. The dramatic changes in drug exposure attributable to inhibition of OATP2B1 highlight the importance of developing a better understanding of the clinical role of OATP2B1. This review aims to provide a thorough summary of the current understanding of the pharmacogenetics, regulation, expression and abundance of OATP2B1 in humans, as well as its clinical relevance in drug-drug and food-drug interactions.

Drug-Drug Interactions of Infectious Disease Treatments in Low-Income Countries: A Neglected Topic?

Clin Pharmacol Ther. 2019 Jun; 105(6); 1378-1385.
Published online 2019 Feb 16

Abstract

Despite recent advances in recognizing and reducing the risk of drug-drug interactions (DDIs) in developed countries, there are still significant challenges in managing DDIs in low-income countries (LICs) worldwide. In the treatment of major infectious diseases in these regions, multiple factors contribute to ineffective management of DDIs that lead to loss of efficacy or increased risk of adverse events to patients. Some of these difficulties, however, can be overcome. This review aims to evaluate the inherent complexities of DDI management in LICs from pharmacological standpoints and illustrate the unique barriers to effective management of DDIs, such as the challenges of co-infection and treatment settings. A better understanding of comprehensive drug-related properties, population-specific attributes, such as physiological changes associated with infectious diseases, and the use of modeling and simulation techniques are discussed, as they can facilitate the implementation of optimal treatments for infectious diseases at the individual patient level.

Mechanisms and Clinical Significance of Pharmacokinetic-Based Drug-Drug Interactions With Drugs Approved by the U.S. Food and Drug Administration in 2017

Abstract

Pharmacokinetic-based drug-drug interaction (DDI) data for drugs approved by the U.S. Food and Drug Administration in 2017 (N = 34) were analyzed using the University of Washington Drug Interaction Database. The mechanisms and clinical relevance of these interactions were characterized based on information from new drug application reviews. CYP3A inhibition and induction explained most of the observed drug interactions (new drugs as victims or as perpetrators), and transporters mediated about half of all DDIs, alone or with enzymes. Organic anion transporting polypeptide (OATP)1B1/1B3 played a significant role, mediating more than half of the drug interactions with area under the time-plasma curve (AUC) changes ≥5-fold. As victims, five new drugs were identified as sensitive substrates: abemeciclib, midostaurin, and neratinib for CYP3A and glecaprevir and voxilaprevir for OATP1B1/1B3. As perpetrators, three drugs were considered strong inhibitors: ribociclib for CYP3A, glecaprevir/pibrentasvir for OATP1B1/1B3, and sofosbuvir/velpatasvir/voxilaprevir for OATP1B1/1B3 and breast cancer resistance protein. No strong inducer of enzymes or transporters was identified. DDIs with AUC changes ≥5-fold and almost all DDIs with AUC changes 2- to 5-fold had dose recommendations in their respective drug labels. A small fraction of DDIs with exposure changes <2-fold had a labeling impact, mostly related to drugs with narrow therapeutic indices. As with drugs approved in recent years, all drugs found to be sensitive substrates or strong inhibitors of enzymes or transporters were among oncology or antiviral treatments, suggesting a serious risk of DDIs in these patient populations for whom effective therapy is already complex because of polytherapy.

Identification and Evaluation of Clinical Substrates of Organic Anion Transporting Polypeptides 1B1 and 1B3

Clin Transl Sci. 2019 Jul; 12(4): 379-387
Published online 2019 Feb 01

Abstract

Organic anion transporting polypeptides (OATPs) 1B1 and 1B3 facilitate the uptake of drugs and endogenous compounds into the liver. In recent years, the impact of these transporters on drug-drug interactions (DDIs) has become a focus of research, and the evaluation of their role in drug disposition is recommended by regulatory agencies worldwide.1-3 Although sensitive substrates of OATP1B1/1B3 have been identified in the literature and probe drugs have been proposed by regulatory agencies, there is no general consensus on the ideal in vivo substrate for clinical DDI studies as analysis may be confounded by contribution from other metabolic and/or transport pathways.1-3 A thorough analysis of the available in vitro and in vivo data regarding OATP1B1/1B3 substrates was performed using the in vitro, clinical, and pharmacogenetic modules in the University of Washington Drug Interaction Database. A total of 34 compounds were identified and further investigated as possible clinical substrates using a novel indexing system. By analyzing the compounds for in vivo characteristics, including sensitivity to inhibition by known OATP1B1/1B3 inhibitors, selectivity for OATP1B1/1B3 compared with other transport and metabolic pathways, and safety profiles, a total of six compounds were identified as potential clinical markers of OATP1B1/1B3 activity.

Developing User Personas to Aid in the Design of a User-Centered Natural Product-Drug Interaction Information Resource for Researchers

Abstract

Pharmacokinetic interactions between natural products and conventional drugs can adversely impact patient outcomes. These complex interactions present unique challenges that require clear communication to researchers. We are creating a public information portal to facilitate researchers’ access to credible evidence about these interactions. As part of a user-centered design process, three types of intended researchers were surveyed: drug-drug interaction scientists, clinical pharmacists, and drug compendium editors. Of the 23 invited researchers, 17 completed the survey. The researchers suggested a number of specific requirements for a natural product-drug interaction information resource, including specific information about a given interaction, the potential to cause adverse effects, and the clinical importance. Results were used to develop user personas that provided the development team with a concise and memorable way to represent information needs of the three main researcher types and a common basis for communicating the design’s rationale.

Extending the DIDEO ontology to include entities from the natural product drug interaction domain of discourse

Abstract

Background

Prompted by the frequency of concomitant use of prescription drugs with natural products, and the lack of knowledge regarding the impact of pharmacokinetic-based natural product-drug interactions (PK-NPDIs), the United States National Center for Complementary and Integrative Health has established a center of excellence for PK-NPDI. The Center is creating a public database to help researchers (primarly pharmacologists and medicinal chemists) to share and access data, results, and methods from PK-NPDI studies. In order to represent the semantics of the data and foster interoperability, we are extending the Drug-Drug Interaction and Evidence Ontology (DIDEO) to include definitions for terms used by the data repository. This is feasible due to a number of similarities between pharmacokinetic drug-drug interactions and PK-NPDIs.

Methods

To achieve this, we set up an iterative domain analysis in the following steps. In Step 1 PK-NPDI domain experts produce a list of terms and definitions based on data from PK-NPDI studies, in Step 2 an ontology expert creates ontologically appropriate classes and definitions from the list along with class axioms, in Step 3 there is an iterative editing process during which the domain experts and the ontology experts review, assess, and amend class labels and definitions and in Step 4 the ontology expert implements the new classes in the DIDEO development branch. This workflow often results in different labels and definitions for the new classes in DIDEO than the domain experts initially provided; the latter are preserved in DIDEO as separate annotations.

Results

Step 1 resulted in a list of 344 terms. During Step 2 we found that 9 of these terms already existed in DIDEO, and 6 existed in other OBO Foundry ontologies. These 6 were imported into DIDEO; additional terms from multiple OBO Foundry ontologies were also imported, either to serve as superclasses for new terms in the initial list or to build axioms for these terms. At the time of writing, 7 terms have definitions ready for review (Step 2), 64 are ready for implementation (Step 3) and 112 have been pushed to DIDEO (Step 4). Step 2 also suggested that 26 terms of the original list were redundant and did not need implementation; the domain experts agreed to remove them. Step 4 resulted in many terms being added to DIDEO that help to provide an additional layer of granularity in describing experimental conditions and results, e.g. transfected cultured cells used in metabolism studies and chemical reactions used in measuring enzyme activity. These terms also were integrated into the NaPDI repository.

Conclusion

We found DIDEO to provide a sound foundation for semantic representation of PK-NPDI terms, and we have shown the novelty of the project in that DIDEO is the only ontology in which NPDI terms are formally defined.

Risk of Clinically Relevant Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration Between 2013 and 2016

Drug Metab Dispos. 2018 Jun; 46(6): 835-845.
Published online 2018 Mar 23

Abstract

A total of 103 drugs (including 14 combination drugs) were approved by the U.S. Food and Drug Administration from 2013 to 2016. Pharmacokinetic-based drug interaction profiles were analyzed using the University of Washington Drug Interaction Database, and the clinical relevance of these observations was characterized based on information from new drug application reviews. CYP3A was involved in approximately two-thirds of all drug-drug interactions (DDIs). Transporters (alone or with enzymes) participated in about half of all interactions, but most of these were weak-to-moderate interactions. When considered as victims, eight new molecular entities (NMEs; cobimetinib, ibrutinib, isavuconazole, ivabradine, naloxegol, paritaprevir, simeprevir, and venetoclax) were identified as sensitive substrates of CYP3A, two NMEs (pirfenidone and tasimelteon) were sensitive substrates of CYP1A2, one NME (dasabuvir) was a sensitive substrate of CYP2C8, one NME (eliglustat) was a sensitive substrate of CYP2D6, and one NME (grazoprevir) was a sensitive substrate of OATP1B1/3 (with changes in exposure greater than 5-fold when coadministered with a strong inhibitor). Approximately 75% of identified CYP3A substrates were also substrates of P-glycoprotein. As perpetrators, most clinical DDIs involved weak-to-moderate inhibition or induction. Only idelalisib showed strong inhibition of CYP3A, and lumacaftor behaved as a strong CYP3A inducer. Among drugs with large changes in exposure (≥5-fold), whether as victim or perpetrator, the most-represented therapeutic classes were antivirals and oncology drugs, suggesting a significant risk of clinical DDIs in these patient populations.